

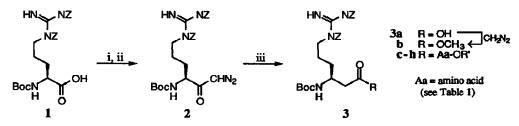
0040-4039(94)01598-8

A Facile Conversion of Arginine into β-Homoarginine Dipeptides

Harold M.M. Bastiaans^a, Astrid E. Alewijnse^a, Juul L. van der Baan^a and Harry C.J. Ottenheijm^{a,b,*}

^aScheikundig Laboratorium, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands ^bScientific Development Group, NV Organon, P.O. Box 20, 5340 BH Oss, The Netherlands

Abstract: Irradiation of the arginine derived diazomethyl ketone 2 in the presence of amino esters gives the corresponding β -homoarginine dipeptide esters 3c-h in 45-76% yield.


 β -Amino acids are important constituents of natural products and have often been used as leads in the development of new therapeutics.¹ In the course of our investigations of arginine-containing enzyme inhibitors we searched for a route towards β -homoarginine peptides. Several synthetic routes to β -amino acids and peptides derived thereof have been devised.² Of these the most direct one is the Arndt-Eistert homologation of α -amino acids which gives the corresponding homologous β -amino acids or esters with retention of configuration.³

Here we report that this Arndt-Eistert methodology can also be applied for the preparation of β -homoarginine derivatives **3a-b** (Scheme 1). In particular, we observed that this homologation reaction - if performed in the presence of an amino ester - leads directly to the corresponding β -homoarginine dipeptide esters **3c-h**.

Conversion of the orthogonally protected arginine derivative 1⁴ into the diazomethyl ketone proved to be rather straightforward and gave 2 in 83% yield.^{5,6} Crude 2 was used for the subsequent Wolff-rearrangement which, due to the base-labile nature of the δ -N benzyloxycarbonyl protecting group in arginine derivatives,⁴ was carried out photochemically instead of by treatment with Ag₂O or with silver benzoate and triethylamine⁷. Thus, irradiation of a solution of diazomethyl ketone 2 and methanol in dioxane gave the β -homoarginine methyl ester 3b in 65% yield. Alternatively, 3b could also be prepared by trapping the intermediate ketene with water to give 3a (55% yield), and subsequent reaction with diazomethane.⁸

Compound 3a can be used in standard peptide coupling reactions in order to prepare β -homoarginine containing peptides. We reasoned, however, that direct peptide formation might be feasible by trapping the ketene derived from 2 with a second amino acid derivative. Indeed, photolysis of 2 in the presence of an amino ester yielded the corresponding β -homoarginine containing dipeptide esters 3c-h.

Scheme 1

i) i-butyl chloroformate, Et₃N, CH₂Cl₂, -20 °C, 15 min.; ii) CH₂N₂, 5 °C, 22 h.; iii) H-R, CH₃CN, 22h, hv, 30 °C.

Thus, the dipeptides 3c-h (Table 1) were prepared by irradiation (300 nm) of a 0.025 M solution of 2 in dry acetonitrile in the presence of 1.2 eq. of an amino ester hydrochloride and 1.2 eq. of triethylamine.⁹ It is noteworthy that this reaction proceeds also with proline methyl ester, a secondary amine, to yield 3g. In nearly all cases (except 3g) a precipitate is being formed during the reaction; filtration gives an amorphous, colourless solid (35-68%) identified as pure dipeptide 3. A second crop could be obtained after aqueous work-up of the filtrate and subsequent crystallization or chromatography.

3	Aa	R'	Yield (%) ^a	Total (%) ^b	mp (*C)
с	L-valine	CH ₃	42	66	138-139
đ	L-tryptophan	CH_3	35	45	116-119
е	D-phenylalanine	CH ₃	55	63	166-167
f	D-phenylalanine	CH ₂ Ph	_ C	55	145-148
g	L-proline	CH ₃	_ d	59	84-86
ĥ	β-alanine	CH ₃	68	76	150-152

Table 1. Dipeptides 3 Prepared by Irradiation of 2 in the Presence of Amino Esters (H-Aa-OR')

^a Yield of dipeptide precipitated during reaction. ^b Total yield, after work-up of the filtrate and crystallization or chromatography. ^C Precipitate not isolated; the reaction mixture was worked-up and purified by chromatography. ^d No precipitate was formed.

In conclusion the Arndt-Eistert homologation in the presence of amino esters as nucleophilic reaction partners is a simple, direct and general method to prepare a large variety of homologous dipeptides including βhomoarginine containing ones.

REFERENCES AND NOTES

- 1. Keirs, D.; Moffat, D.; Overton, K. & Tomanek, R. J. Chem. Soc. Perkin Trans. / 1991, 1041-1051, and references cited therein.
- 2. Recently, a general asymmetric synthesis of β-amino acids featuring a nitrone cycloaddition has been reported; see reference 1.
- 3. Cassal, J.-M.; Fürst, A. & Meier, W. Helv. Chim. Acta 1976, 59, 1917-1924.
- Jetten, M.; Peters, C.A.M.; van Nispen, J.W.F.M. & Ottenheijm, H.C.J. Tetrahedron Lett. 1991, 32, 6025-6028
 All compounds were properly characterized by ¹H-, ¹³C-NMR and FAB-HRMS.
- 6. 2: mp 130-131 'C; Rf 0.45 (SiO₂; CH₂Cl₂/EtOAc, 12/1); ¹H-NMR (CDCl₃): δ 1.40 (s, 9H, Boc), 1.60-1.72 (m, 4H, β-++ H), 3.95 (bd, ${}^{3}J = 8.0$ Hz, 2H, δ -H), 4.18 (m, 1H, α -H), 5.08 and 5.16 (AB system, 2H, $J_{AB} = 12$ Hz, OCH₂Ph), 5.22 (s, 2H, OCH₂Ph), 5.49 (bs, 1H, CHN₂), 5.61 (bd, 1H, ${}^{3}J = 8.0$ Hz, α -NH), 7.25-7.42 (m, 10H, arom.), 9.29 (bs, 1H, ϖ -NH), 9.43 ppm (bs, 1H, w'-NH). See also: Christiansen, J.; Young, G.T. Pept. Proc. Eur. Pept. Symp. 16th 1980, 612-616.
- 7. e.g. Baláspiri, L.; Penke, B.; Papp, Gy.; Dombi, Gy. & Kovács, K. Helv. Chim. Acta 1975, 58, 969-973 and Buchschacher, P.; Cassal, J.-M.; Fürst, A. & Meier, W. Helv. Chim. Acta 1977, 60, 2747-2755.
- 8. 3a: viscous oil; Rf 0.52 (SiO₂; CHCl₃/MeOH, 32/1); ¹H-NMR (CDCl₃) δ 1.35 (s, 9H, Boc), 1.38-1.68 (m, 4H, γ + δ-H), 2.42 (bs, 2H, α -H), 3.75-3.98 (m, 3H, β - + ϵ -H), 5.06 (bd, 1H, ³J = 8.0 Hz, β -NH), 5.07 (bs, 2H, OCH₂Ph), 5.17 (bs, 2H, OCH₂Ph), 7.15-7.38 (m, 10H, arom.), 9.15-9.40 ppm (bs, 2H, ω- + ω'-NH). 3b: mp 89-91 °C; Rf 0.40 (SiO₂; CH₂Cl₂/EiOAc, 12/1); ¹H-NMR (CDCl₃): δ 1.28-1.70 (m, 4H, γ- + δ-H), 1.40 (s, 9H, Boc), 2.39 (bd, 2H, ${}^{3}J = 6.7$ Hz, α -H), 3.55 (s, 3H, OCH₃), 3.73-3.97 (m, 3H, β - + ϵ -H), 4.99 (bd, 1H, ${}^{3}J = 8.0$ Hz, β -NH),
- 5.08 (bs, 2H, OCH₂Ph), 5.18 (bs, 2H, OCH₂Ph), 7.14-7.38 (m, 10H, arom.), 9.20 (bs, 1H, w-NH), 9.37 ppm (bs, 1H, w' NH). 9. The preparation of 3e is typical: To a stirred solution of H-D-Phe-OMe.HCl (2.1 gr, 9.8 mmol) in dry CH₃CN (200 ml) and Et₃N (1.4 ml, 9.8 mmol) was added at room temperature a solution of 2 (8.2 mmol, about 80% pure) in dry CH₃CN (150 ml) under a nitrogen atmosphere. The reaction mixture was stirred and irradiated (300 nm) with 16 lamps of 12 Watt each; the temperature was kept at 30 °C. After a few minutes the evolution of N2 was observed. The precipitate formed after 22 h of irradiation was filtered off, washed with ice-cold CH₃CN, and dried under reduced pressure giving pure 3e in 55% yield. The filtrate was concentrated under reduced pressure. The residue was dissolved in CH2Cl2 and the solution was washed with, subsequently, water, citric acid (1N), water and brine, dried (Na₂SO₄), filtrated, evaporated to dryness under vacuum, and crystallized from CH₃CN, yielding a second crop of 8%. Mp 166-167 °C; Rf 0.59 (SiO₂; CH₂Cl₂/EtOAc, 10/3); ¹H-NMR (CDCl₃): δ 1.38 (s, 9H, Boc), 1.33-1.64 (m, 4H, Arg γ- + δ-H), 2.26 and 2.73 (AB of ABX, 2H, J_{AB} = 16.0 Hz, Arg α-H), 3.71 and 3.10 (AB of ABX, 2H, J_{AB} = 14.8 Hz, Phe β -H), 3.50-3.80 (m, 3H, Arg β - + ϵ -H), 3.65 (s, 3H, OCH₃), 4.74-4.89 (X of ABX, 1H, Phe α-H), 5.07 and 5.15 (AB system, 2H, J_{AB} = 12.7 Hz, OCH₂Ph), 5.22 and 5.25 (AB system, 2H, J_{AB} = 13.3Hz, OCH₂Ph), 5.92 (bd, 1H, ³J = 8.7 Hz, Arg β-NH), 6.62 (bd, 1H, ³J = 8.6 Hz, amide-NH), 6.96-7.45 (m, 15H, arom.), 9.26 (bs, 1H, @-NH), 9.37 ppm (bs, 1H, @'-NH).

(Received in UK 14 July 1994; revised 18 August 1994; accepted 19 August 1994)